plane; in the **b** direction, we meet in succession two sheets of steroid molecules and one sheet made up of the included solvent. The steroid molecules in the same sheet are linked in the **a** direction by a hydrogen bond $(0 \cdots O = 2.75 \text{ Å}, O-H \cdots O = 166^{\circ})$. Each inclusion molecule is linked to a steroid molecule by a hydrogen bond involving the 17β -ol function $(O \cdots O = 2.86 \text{ Å}, O-H \cdots O = 158^{\circ})$.

In the **b** and **c** directions, crystal cohesion is ensured by attractive van der Waals forces. No repulsive contacts are observed. The authors thank the Roussel Uclaf Society for the sample.

References

BUSETTA, B., COURSEILLE, C., GEOFFRE, S. & HOSPITAL, M. (1972). Acta Cryst. B28, 1349–1351.

BUSETTA, B. & HOSPITAL, M. (1972). Acta Cryst. B28, 560-567.

GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.

SHORT COMMUNICATIONS

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible.

Acta Cryst. (1976). B32, 1298

Reply to Comment on 'Struktur des tetragonalen (B₁₂)₄B₂Ti_{1,3-2,0}' by E. Amberger and K. Polborn. By E. Amberger and K. Polborn, Institut für Anorganische Chemie der Universität, D-8000 München 2, Meiserstrasse 1, Deutschland (BRD)

(Received 25 November 1975; accepted 26 November 1975)

Reduction of BCl₃ and TiCl₄ with H₂ on boron nitride substrate produces the analytically controlled carbonfree $(B_{12})_4 B_2 Ti_{1,3-2,0}$. Therefore the tetragonal unit cell contains boron on special equivalent point 2(b) and titanium on 2(a).

In the paper Struktur des tetragonalen $(B_{12})_4 B_2 Ti_{1,3-2,0}$ (Amberger & Polborn, 1975) the synthesis and structure of the berthollide titanium boride were described. The unit cell was found to contain four B_{12} icosahedra, two single boron atoms on special equivalent point 2(*b*), and a maximum of two titanium atoms on 2(*a*). Now Ploog (1976) in a comment on this paper argues that carbon is more likely to occupy the 2(*b*) position than boron.

But there are convincing arguments against this: (i) The crystal used for X-ray investigation was taken from a certain crystalline region of the boride deposit. The chemical analysis showed that this region was free from carbon. (ii) Furthermore each synthesis (reduction of gaseous BCl₃ and TiCl₄ with H₂) yielded the carbon-free titanium boride. An *I*-tetragonal titanium boride carbide $(B_{12})_4C_{\sim 2}Ti_{1.5-2.0}$ (Amberger, Polborn & Gerster, in preparation) was pro-

duced – and in fact is reproducible – under these conditions but only with an additional amount of CCl₄. In the latter cell, carbon occupies the 2(b) position and titanium the 2(a). (iii) The structure of the titanium boride was derived from photometrically measured X-ray patterns. The figures resulting from this procedure are not precise enough to signify a formula of the investigated compound other than the formula $(B_{12})_4B_2Ti_{1\cdot3-2\cdot0}$, derived from chemical and analytical findings.

References

- AMBERGER, E. & POLBORN, K. (1975). Acta Cryst. B31, 949-953.
- PLOOG, K. (1976). Acta Cryst. B32, 981-982.